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Abstract:  

Although the anthropogenic emissions of SO2 have decreased significantly in China, 

the decrease in SO4
2- in PM2.5 is much smaller than that of SO2. This implies an 

enhanced formation rate of SO4
2- in the ambient air, and the mechanism is still under 25 

debate. This work investigated the formation mechanism of particulate sulfate based on 

statistical analysis of long-term observations in Shijiazhuang and Beijing supported 

with flow tube experiments. Our main finding was that the SOR was exponentially 

correlated with ambient RH in Shijiazhuang (SOR=0.15+0.0032exp(RH/16.2)) and 

Beijing (SOR=-0.045+0.12exp(RH/37.8)). In Shijiazhuang, the SOR is linearly 30 

correlated with the ratio of aerosol water content (AWC) in PM2.5 

(SOR=0.15+0.40AWC/PM2.5). Kinetics studies suggest that uptake of SO2 instead of 

oxidation of S(IV) in particle-phase is the rate determining step for sulfate formation. 

NH4NO3 plays an important role in the AWC and the transition of particle phase, which 

is a crucial factor determining the uptake kinetics of SO2 and the enhanced SOR during 35 

haze days. Our results show that NH3 significantly promoted the uptake of SO2, 

subsequently, the SOR, while NO2 had little influence on SO2 uptake and SOR in the 

presence of NH3.  
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1. Introduction 

Atmospheric particulate matter (PM) is a world-wide concern due to its adverse effect 40 

on human health, such as association with respiratory and cardiovascular diseases, lung 

cancer and premature death (WHO, 2013;Lelieveld et al., 2015). The Chinese 

government has made great efforts to improve the air quality (Cheng et al., 2019). For 

example, the annual PM2.5 concentration in Beijing decreased from 89.5 g m-3 in 2013 

to 58 g m-3 in 2017 due to the stringent reduction of local and regional emissions 45 

(Cheng et al., 2019;Ji et al., 2019). However, the PM2.5 concentrations in most regions 

of China (Cheng et al., 2019;Chen et al., 2019c;Huang et al., 2019;Tian et al., 2019) are 

still significantly higher than the PM2.5 standard recommended by World Health 

Organization (WHO) (WHO, 2006). Haze events also occur with high frequency, 

especially, in autumn and winter. 50 

Secondary aerosol, including sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+) 

(SNA) and secondary organic aerosol (SOA) usually contributes to ~70 % of PM2.5 

mass concentration in different regions (Huang et al., 2014;An et al., 2019). SNA often 

accounts for more than a half of PM2.5 mass in severe pollution events (Zheng et al., 

2015;Wang et al., 2016). Even SO4
2- exceeds more than 20 % of PM2.5 mass (Guo et al., 55 

2014;Wang et al., 2016;Xie et al., 2015;He et al., 2018). Interestingly, the anthropogenic 

emissions of SO2 in 2017 reduced by ~90 % when compared with 2000 in Beijing 

(Cheng et al., 2019;Lang et al., 2017). However, the decrease rate of particulate SO4
2- 

concentration (Lang et al., 2017;Li et al., 2017) is much smaller than SO2 (Lang et al., 

2017;Zhang et al., 2020). This implies an enhanced oxidation rate of SO2 in the 60 
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atmosphere (Lang et al., 2017). However, the mechanisms and kinetics of particulate 

SO4
2- formation in the real atmosphere are still open questions in many regions of China 

although they have been extensively discussed (Ervens, 2015;Warneck, 2018).  

Particulate SO4
2- can be formed through homogeneous oxidation of SO2 by 

hydroxyl radicals (OH) and Stabilized Criegee Intermediates (SCIs) (Seinfeld and 65 

Pandis, 2006;Liu et al., 2019a). Modeling studies greatly underestimated (~54.2 %) 

SO4
2- concentration in serve pollution events in Beijing if only considering gas-phase 

oxidation of SO2, while the normalized mean bias (NMB) decreased significantly after 

heterogeneous oxidation of SO2 being considered (Zheng et al., 2015). Several 

heterogeneous and/or multiphase oxidation pathways, such as oxidation of SO2 or 70 

sulfite by NO2 (He et al., 2014), H2O2 (Huang et al., 2015;Maaß et al., 1999;Liu et al., 

2020a), HONO (Wang et al., 2020a) and O3 (Maahs, 1983) or photochemical oxidation 

of SO2 (Yu et al., 2017;Xie et al., 2015) on dust surfaces, catalytic oxidation of SO2 by 

transition metal ions (TMI) (Warneck, 2018;Martin and Good, 1991;Wang et al., 2021) 

and oxidation of SO2 by NO2 (Clifton et al., 1988;Wang et al., 2016;Cheng et al., 75 

2016;Wu et al., 2019) in aqueous phase and heterogeneous oxidation of SO2 on black 

carbon (Zhao et al., 2017;Zhang et al., 2020;Yao et al., 2020), have been proposed based 

on field measurements, laboratory and modeling studies. However, it is still 

controversial about the relative contribution of these pathways to SO4
2- production. For 

example, the contribution of heterogeneous oxidation to SO4
2- production had been 80 

evaluated to be (485) % based on oxygen isotopic measurements (He et al., 2018), 

while it was 31 % even in the nighttime calculated by an observe based modeling (OBM) 
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simulation (Xue et al., 2016). Oxidation by OH could explain 33-36 % of SO4
2- 

production in BTH (Liu et al., 2019a), while it was negligible based on isotopic 

measurements (He et al., 2018) and OBM simulation (Xue et al., 2016). As for the 85 

oxidation of S(IV) species, which includes SO2, HSO3
- and SO3

2-, in aqueous phase, 

oxidation by H2O2 (Liu et al., 2020b;Liu et al., 2020a), NO2 (Wang et al., 2020a;Wang 

et al., 2016;Cheng et al., 2016), O3 (Fang et al., 2019), or TMI (Mn2+) (Wang et al., 

2021) was proposed as the most important pathway by different researchers. It should 

be noted that some reaction mechanisms mentioned above were proposed based on case 90 

studies in short-term observations. Thus, long-term observations at different 

environments are required to verify whether these mechanisms are statistically 

important. In addition, the previous studies mainly focused on oxidation process of SO2 

in particle phase, while it is unclear what the control factors are from gas-phase SO2 to 

particle-phase sulfate. In particular, it has been found that the mass fraction of NO3
- and 95 

NH4
+ is increasing gradually (Lang et al., 2017;Li et al., 2018). It is still poorly 

understood about the feedback between aerosol physics and aerosol chemistry.  

In this work, one-year field observations have been performed in Shijiazhuang and 

Beijing, synchronously. The formation mechanism of particulate sulfate has been 

statistically discussed. The conversion ratio of SO2 to sulfate is statistically and linearly 100 

correlated to the aerosol water content (AWC), which is mainly modulated by 

particulate ammonium nitrate. The reaction kinetics and other factors affecting sulfate 

production have also been discussed. 

2. Material and methods 
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2.1 Field measurements. Field measurements were performed at Shijiazhuang 105 

University (SJZ, Lat. 38.0281º and Lon. 114.6070º) and the west campus of Beijing 

University of Chemical Technology (BUCT, Lat. 39.9428º and Lon. 119.2966º) from 

March 15, 2018 to April 15, 2019. The SJZ station is on a rooftop of the main teaching 

building (5 floors, ~23 m above the surface), which is around 250 m from the Zhujiang 

road of Shijiazhuang. The BUCT station is on a rooftop of the main building (5 floors, 110 

~18 m above the surface), which is around 550 m from the 3rd ring road of Beijing. The 

distance between the two stations, which are the representative cities of BJH, is 260 km 

(Figure S1). Both stations are surrounded by traffic and residential emissions, thus, are 

typical urban observation sites. The details about the observation stations have been 

described in our previous work (Liu et al., 2020e;Liu et al., 2020d;Liu et al., 2020c). 115 

Ambient air was drawn from the roof of the corresponding building. At the SJZ 

station, the mass concentration of PM2.5 was measured by a beta attenuation mass 

monitor (BAM-1020, Met One Instruments, USA) with a smart heater (Model BX-830, 

Met One Instruments Inc., USA) to control the RH of the incoming air to 35% and a 

PM2.5 inlet (URG) to cut off the particles with diameter larger than 2.5 m. Particle 120 

phase Fe and Mn were measured using a heavy metal analyzer (EHM-X100, Skyray 

Instrument). Water-soluble ions (Na+, K+, Mg2+, Ca2+, NH4
+, SO4

2-, Cl- and NO3
-) in 

PM2.5 and gas pollutants (HCl, HONO, HNO3, SO2 and NH3) were measured using an 

analyzer for Monitoring Aerosols and Gases (MARGA, ADI 2080, Applikon Analytical 

B.V., Netherlands) with 1 hour of time resolution. At the BUCT station, the mass 125 

concentration of PM2.5 was the mean concentration obtained from four surrounding 

https://doi.org/10.5194/acp-2021-289
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

monitoring stations (including Wanliu, Gucheng, Wanshouxigong and Guanyuan) of 

China Environmental Monitoring Centre (http://www.cnemc.cn). The chemical 

composition of PM2.5 was measured using a Time-of-Flight Aerosol Chemical 

Speciation Monitor (ToF-ACSM, Aerodyne) after the ambient air went through a PM2.5 130 

inlet (URG) and a Nafion dryer (MD-700-24, Perma Pure). The configuration and the 

operation protocol of ToF-ACSM have been described well in previous work (Fröhlich 

et al., 2013). IE calibration for ACSM was performed using 300 nm dry NH4NO3 every 

month. Ambient air was drawn from the roof using a Teflon sampling tube (BMET-S, 

Beijing Saak-Mar Environmental Instrument Ltd.) with the residence time <10 s for 135 

gas-phase pollutant measurements. Trace gases including NOx, SO2, CO and O3 were 

measured with the corresponding analyzer (Thermo Scientific, 42i, 43i, 48i and 49i) at 

both the SJZ and BUCT stations. Meteorological parameters including temperature, 

pressure, relative humidity (RH), wind speed and direction were measured using 

weather stations (WXT 520 at HAS/SJZ station and AWS 310 at AHL/BUCT station, 140 

Vaisala).  

2.2 Uptake kinetics of SO2 on dust internally mixed with NH4NO3. To understand 

the influence on RH on uptake kinetics of SO2, the SO2 on dust internally mixed with 

NH4NO3 was measured using a coated-wall flow tube reactor. The configuration of the 

reactor and data process protocol have been described in detail previously (Han et al., 145 

2013;Liu et al., 2015). The , presenting the mass transfer kinetic of gas phase SO2 to 

particle phase, is defined by the net loss rate of SO2 per collision onto the surface 

(Ravishankara, 1997;Usher et al., 2003), namely, 
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𝛾𝑜𝑏𝑠 =
−

𝑑𝑐

𝑑𝑡

ω
=

2𝑘𝑜𝑏𝑠𝑟𝑡𝑢𝑏𝑒

<𝑐>
 (1) 

where -dc/dt is the net loss rate of SO2 when the surface is exposed to SO2 (molecules 150 

s-1);  is the collision frequency (s-1); kobs, rtube and <c> are the first-order rate constant 

of SO2, the flow tube radius and the average molecular velocity of SO2, respectively. A 

correction for gas phase diffusion limitations was considered for obs calculations using 

the Cooney–Kim–Davis (CKD) method (Cooney et al., 1974;Murphy and Fahey, 1987). 

The BET uptake coefficients (SO2,BET) was obtained from the mass dependence of obs 155 

as follows (Han et al., 2013;Liu et al., 2015): 

𝛾𝑆𝑂2,𝐵𝐸𝑇 = [slope]
𝐴𝑔

𝑆𝐵𝐸𝑇
 (2)  

where [slope] is the slope of the plot of obs versus the sample mass in the linear regime 

(mg-1); Ag is the inner surface area of the sample tube (cm2); and SBET is the specific 

surface area of the particle sample (cm2 mg-1).  160 

Similar to a previous work (Zhang et al., 2019), dust internally mixed with  

NH4NO3 was used in the kinetics study because it was difficult to deposit enough real 

ambient particles onto the inner surface of the sample holder. Although the composition 

of the model particles is much simpler than that of ambient particles, it is still 

meaningful because we mainly focused on the influence of RH or aerosol water content 165 

(AWC) on uptake kinetics of SO2. The mixture (mass ratio = 2:1) of A1 Ultrafine test 

dust (Powder Technology Inc.) and NH4NO3 (AR, Sinopharm Chemical Reagent Co. 

Ltd, China) were suspended in the mixture of ethanol and water (v:v=1:3). The inner 

surface of the Pyrex quartz tube (sample holder) was uniformly coated by the above 

mixture and dried overnight in an oven at 393 K. The sample mass was calculated 170 
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according to the weighted mass of the dry tube before and after coating. To avoid the 

wall loss of SO2 on the sample holder, all the inner surface of the sample holder was 

covered with particles. The wall loss of SO2 on the remained surface (the inner surface 

of the outside tube and the outside surface of the sample holder) was subtracted in a 

steady-state at the corresponding RH before the uptake experiment as done in our 175 

previous work (Liu et al., 2015). The mean concentrations of SO2, NO2 and NH3 were 

8.3±5.2 (0.4-49.1), 31.5±13.2 (2.5-85.1) and 41.0±18.4 (0.3-126.4) ppb, respectively, 

in polluted events (with the PM2.5 concentration higher than 75 g m-3 and the RH less 

than 90%) in Shijiazhuang. The initial concentrations of SO2, NO2 and NH3 in the 

reactor were 190 ± 2.5, 100 ± 2.5 and 50 ± 2.5 ppb, respectively. The initial 180 

concentrations of NO2 and NH3 were close to their ambient concentrations, while a high 

initial SO2 concentration was used here to obtain a good signal to noise ratio for SO2 

measurements. In this work, we aimed to understanding the influence of AWC on the 

uptake kinetics of SO2. Therefore, we fixed the initial concentrations of pollutants and 

the temperature at 300 K. SO2 and NO2 were measured using the corresponding 185 

analyzer (Thermo 43i and 42i) and NH3 was measured by an ammonia analyzer (EAA-

22, LGR, USA). The specific surface area of the mixture of A1 dust and NH4NO3 was 

0.813 m2·g-1, measured by a nitrogen Brunauer-Emmett-Teller (BET) physisorption 

analyzer (Quantachrome Autosorb-1-C). RH from 0 to 80 % was adjusted by varying 

the ratio of dry to wet zero air (water bubbler) and measured by a RH sensor (HMP110, 190 

Humicap). Control experiments demonstrate that adsorption of SO2 on the quartz tube 

is negligible.  
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2.3 Calculations of AWC, aerosol pH and production rates of sulfate in aerosol 

liquid water. The AWC and aerosol pH in Shijiazhuang were calculated using the 

ISORROPIA II model using the measured concentrations of SO4
2-, NH4

+, NH3, NO3
-, 195 

HNO3, Cl-, HCl, Na+, Ca2+, K+ and Mg2+, RH and temperature as input. The particles 

were assumed in metastable phase using a forward method (Song and Osada, 2020;Shi 

et al., 2019). The dataset with RH lower than 35 % were excluded (Pye et al., 2020) due 

to large uncertainties of aerosol pH (Ding et al., 2019;Guo et al., 2016;Pye et al., 2020). 

pH was then calculated according to: 200 

pH = −log10
1000𝛾

𝐻+𝑐
𝐻+

𝐴𝑊𝐶
  (1) 

where H+ is the activity coefficient of H+. The AWC of model particles for laboratory 

studies was also calculated with the known composition, while the aerosol pH in Beijing 

were not calculated because the concentrations of Na+, Ca2+, K+ and Mg2+ were 

unavailable.  205 

Similar to previous studies (Liu et al., 2020a;Cheng et al., 2016), four oxidation 

pathways of S(IV) in aqueous-phase were accounted for, i.e., oxidation by O3, H2O2, 

NO2 and TMI (Fe3+ and Mn2+), according to following equations: 

− (
𝑑[S(IV)]

𝑑𝑡
)

O3

= (𝑘0[SO2,𝑎𝑞] + 𝑘1[HSO3
−] + 𝑘2[SO3

2−])[O3,𝑎𝑞] (3) 

− (
𝑑[S(IV)]

𝑑𝑡
)

H2O2

=
𝑘3[H+][HSO3

−][H2O2,aq]

1+𝐾[H+]
 (4) 210 

− (
𝑑[𝑆(𝐼𝑉)]

𝑑𝑡
)

𝑇𝑀𝐼
= 𝑘4[H+]𝛼[Mn2+][Fe3+][S(IV)]  (5) 

− (
𝑑[𝑆(𝐼𝑉)]

𝑑𝑡
)

NO2

= 𝑘5[NO2, 𝑎𝑞][S(IV)] (6) 

where k0 = 2.4104
 M-1 s-1, k1 = 3.7105 M-1 s-1, k2 = 1.5109

 M-1 s-1, k3 = 7.45107
 M-1 

s-1, K = 13 M-1, k4 = 3.72107
 M-1 s-1, and  = -0.74 (for pH4.2) or k4 = 2.511013 M-1 
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s-1, and  = 0.67 (for pH>4.2) and k5 =(1.24–1.67) 107 M-1 s-1 (for 5.3  pH  8:7; the 215 

linear interpolated values were used for pH between 5.3 and 8.7) at 298K (Clifton et al., 

1988;Liu et al., 2020a). [O3, aq], [H2O2, aq] and [NO2, aq] were calculated according 

to the Henry’s constants, which are 1.110-2, 1.0105 and 1.010-2 M atm-1 at 298 K 

for O3, H2O2 and NO2, respectively. H2O2 concentrations were unavailable during our 

observations. It was fitted based on temperature like a previous work (Fang et al., 2019) 220 

and varied from 0.05 to 3.7 ppbv, with a mean value of 0.620.52 ppbv. The 

concentrations of Fe3+ and Mn2+ were calculated according to the measured total Fe and 

Mn concentrations assuming 18% of total Fe and 30 % of total Mn were soluble (Wang 

et al., 2014;Cui et al., 2008) and the precipitation equilibriums of Fe(OH)3 and 

Mn(OH)2 depending on pH. The concentrations of Fe and Mn before December 2018 225 

were estimated according to their mean ratios to PM2.5 mass concentration (Wang et al., 

2014) because the instrument was unavailable. 

3. Results and discussion 

3.1 Variation of sulfate in PM2.5. Figure 1A shows the hourly mean mass concentration 

of PM2.5 measured at SJZ and BUCT stations from March 15, 2018 to April 15, 2019. 230 

The mass concentration of PM2.5 in Shijiazhuang generally coincided well with that in 

Beijing. This highlights the regional characteristic of air pollution in BJH. However, 

Shijiazhuang usually showed significantly higher PM2.5 concentration than that in 

Beijing. The hourly mean PM2.5 concentration varied in the range of 0 - 650 μg m-3 with 

an annual mean concentration of 86.4  77.8 μg m-3. The corresponding values in 235 

Beijing were 1.5 - 556 and 55.0  51 μg m-3. Particularly, the wintertime mass 
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concentration of PM2.5 in Shijiazhuang was as around 2.4 times as that in Beijing. This 

is well consistent with previous results that Shijiazhuang is suffering from more serious 

air pollution (Chen et al., 2019b) because of its larger population of heavy industries 

and more intensive emissions than Beijing (Chen et al., 2019a).  240 
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Fig. 1. The hourly mean (A) mass concentration of PM2.5, (B) sulfate concentration, (C) 

sulfate fraction in PM2.5, (D) molar ratio of nitrate to sulfate, (E) sulfur oxidation ratio 

(SOR) and (E) Ox (=NO2+O3) concentration in Shijiazhuang and Beijing from March 

15, 2018 to April 15, 2019. 245 

Like the mass concentration of PM2.5, both the mass concentration (Fig. 1B) and 

the fraction of sulfate in PM2.5 (Fig. 1C) in Shijiazhuang were usually higher than those 

in Beijing. The annual mean sulfate concentrations in Shijiazhuang and Beijing were 

11.7  12.7 and 5.4  6.9 μg m-3, which annually contributed 15.38.7 % and 10.77.3 % 

to the PM2.5 mass concentrations, respectively. However, the molar ratio of NO3
- to 250 

SO4
2- (3.373.05) corresponding to the mass ratio (2.171.97) in Beijing was 

significantly higher than that in Shijiazhuang (2.691.80, corresponding to mass ratio 
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of 1.771.72) at 0.05 level. This is consistent with the emission inventories of air 

pollutants, in which Shijiazhuang had larger SO2 emissions than Beijing, and vice versa 

for NOx emissions (Yang et al., 2019;Liu et al., 2017a;Chen et al., 2019a). A decrease 255 

of sulfate concentration (5.46.9 g m-3) in Beijing was significant even when 

compared with that in PM1.0 (8.18.3 g m-3) measured from July 2011 to June 2012 

(Sun et al., 2015), while the mass ratio of NO3
-/SO4

2- (2.171.97) in Beijing showed an 

obvious increase compared with those in 2011-2012 (1.3-1.8) (Sun et al., 2015) and 

2008 (0.8-1.5) (Zhang et al., 2013). This can be ascribed to the effective reduction of 260 

SO2 emissions and the increased traffic emissions in Beijing. 

The ground surface concentrations of pollutants are prone to be affected by 

variation of mixing layer height (MLH) (Zhong et al., 2018;Tang et al., 2016). Sulfur 

oxidation ratio (SOR), which is defined as the molar ratio of sulfate to total sulfur 41, 42, 

SOR =
𝑛

𝑆𝑂4
2−

𝑛
𝑆𝑂4

2−+𝑛𝑆𝑂2  
              (7) 265 

was calculated and should be less affected by the MLH variation. As shown in Figure 

1E, the SOR in Beijing was overall higher than that in Shijiazhuang. Thus, the annual 

mean SOR in Beijing (0.420.29) was comparable with that reported in literatures 

(Fang et al., 2019), while it was significantly higher than that in Shijiazhuang 

(0.310.19) at 0.05 level. This implies the oxidation capacity in Beijing might be 270 

stronger than that in Shijiazhuang or the air mass might be more aged in Beijing than 

that in Shijiazhuang. However, the Ox (Ox = NO2+O3) concentration in Shijiazhuang 

was usually higher than that in Beijing (Fig. 1F). The annual mean Ox concentration in 

Shijiazhuang was 55.2  22.3 ppb, which was significantly higher than that in Beijing 
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(50.7  21.5 ppb) at 0.05 level. This means that a higher SOR should be observed in 275 

Shijiazhuang than Beijing if gas phase oxidation mainly contributed to sulfate 

formation. These results suggest that heterogeneous and/or multi-phase reactions play 

important roles in particulate sulfate formation (Zheng et al., 2015;Martin and Good, 

1991;Wu et al., 2019). 

Figure 2A-C shows the mass concentration of PM2.5 colored according to the mass 280 

concentration of sulfate, the fraction of sulfate in the soluble PM and the SOR in 

Shijiazhuang. In most serve pollution events, high PM2.5 mass concentration well kept 

pace with the high sulfate concentration, the fraction of sulfate and the SOR (colored 

in grey color). For example, the mean PM2.5 concentration was 411.7  98.1 μg m-3 

during the pollution event occurred from 8:00 on January 12, 2019 to 0:00 on January 285 

15, 2019. The corresponding sulfate concentration, fraction of sulfate in soluble PM 

and SOR were 80.6  24.0 μg m-3, 39.4  3.6 % and 0.79  0.09, respectively. Other 

pollution episodes, which were highlighted in grey color in Fig. 2, showed the similar 

trend. The variations of the sulfate concentration, the fraction of sulfate in non-

refractory PM2.5 and the SOR with PM2.5 mass concentration in Beijing were similar to 290 

Shijiazhuang and shown in Fig. S2. These results confirm that the conversion rate of 

SO2 to sulfate is promoted in pollution days when compared with that in clean days. 
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Fig. 2. Mass concentration of PM2.5 colored according to (A) sulfate concentration, (B) 

sulfate fraction in soluble PM, (C) SOR, (D) RH and (E) AWC in Shijiazhuang. The 295 

shade areas in grey indicate the pollution events with high concentration of sulfate at 

high RH, while the purple ones the mean pollution events with low sulfate fraction at 

high RH. 

3.2 Role of aerosol water content in sulfate formation. Previous studies have found 

that severe pollution events are frequently accompanied with high RH (Zhang et al., 300 

2018;Tang et al., 2016;Wu et al., 2018;Liu et al., 2019b;Clifton et al., 1988;Maahs, 

1983;Martin and Good, 1991). As shown in Fig. 2D, the high concentration of sulfate 

positively correlated with high RH in most cases, which were shaded in grey columns. 

However, some pollution events (shaded in purple columns) also occurred under high 

RH but the sulfate concentration or sulfate fraction in soluble PM was not so high. This 305 

means that high RH is a necessary but not a sufficient condition for sulfate conversion 

in severe haze pollution events. Thus, it is difficult to fully understand the general 

regularity behind the dataset or overemphasize the importance of a specific process in 
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the atmosphere based on case studies. This might be the reason why contrary 

conclusions about the formation path of sulfate were drawn by different researchers. 310 

We statistically analyzed the relationship between the SOR and the RH. All the hourly 

mean data of the SOR and RH have been binned into 100100 boxes. Then, the density 

of data points, which statistically indicates the occurrence of the events at given values 

of RH and SOR, was calculated using a bivariate kernel density estimator (Wand and 

Jones, 1993).  315 

Figure 3A and B show the 2D Kernel density graphs between the SOR and the RH 

in Shijiazhuang and Beijing. The color bar shows the density of data points. Although 

the SOR varied obviously at a certain RH, the most probable distribution of SOR could 

be exponentially fitted as a function of RH in Shijiazhuang (Fig. 3A), that’s, 

SOR=0.15+0.0032exp(RH/16.2) (R=0.79). This is consistent with the dependence of 320 

SOR on RH based on previous studies (Tian et al., 2019;Wu et al., 2019). It should be 

noted that both SOR and RH showed obvious diurnal variation (Fig. S3). Their diurnal 

variations were somewhat similar, but a four-hours of time lag was observed between 

their minimum values. This means that the diurnal variations of SOR and RH might 

also contribute to the strong dependency of SOR on RH (Fig. 3A and B). However, the 325 

exponential dependency of SOR on RH was still observable in the night or in the day 

(Fig. S4A and B). It did so in winter or summer (Fig. S4C and D). This means that 

aqueous reactions is important for sulfate formation even if the influence of diurnal and 

seasonal variations are ruled out (Wang et al., 2016;Cheng et al., 2016).  
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 330 

Fig. 3. Relationship between SOR and SO2,BET on dust internally mixed with NH4NO3 

(2:1) and RH in (A) Shijiazhuang and (B) Beijing, and the correlation of (C) SOR in 

Shijiazhuang and (D) SO2,BET with AWC/PM2.5. The initial concentrations of SO2, NO2 

and/or NH3 in the flow tube reactor were 190 ± 2.5, 100 ± 2.5 and/or 50 ± 2.5 ppb, 

respectively. The grey lines are the fitting curves for the most probable SOR and the 335 

white lines are the fitting curves for the SO2,BET. 

In Fig. 3A, 72.5 % of the data points of Shijiazhuang (6509 over 8980 effective 

points, which shown in small grey dots) were in the domain with the RH range of 10 % 

- 70 % and the SOR range of 0.05 – 0.42, while 10.1 % of data points were in the region 

with the RH greater than 70 % and the SOR greater than 0.42. The first region 340 

corresponded to a lower mean PM2.5 concentration, sulfate concentration and SOR 

(76.162.78 μg m-3, of 8.16.3 μg m-3, and 0.210.09, respectively) compared with the 

second one (115.796.7 μg m-3, 22.420.4 μg m-3 and 0.620.14, respectively). As 

shown in Fig. 3B, the SOR also exponentially increased as a function of RH in Beijing. 

74.6 % of 8169 data points were in the first region. The mean PM2.5 concentration, 345 
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sulfate concentration and SOR were 48.2  44.8 μg m-3, 2.9  3.0 μg m-3 and 0.21  

0.10 in the low RH region, while they were 69.9  50.9 μg m-3, 9.4  8.5 μg m-3 and 

0.83  0.15 in the high RH region. The most probable distribution of SOR in Beijing 

could also be exponentially fitted as a function of RH (SOR=-

0.045+0.12exp(RH/37.8), R=0.92). However, the SOR was more sensitive to RH in 350 

Beijing than that in Shijiazhuang. This might be explained by the increased importance 

of sulfate formation via gas phase reactions in Beijing (Fang et al., 2019;Hollaway et 

al., 2019) because the PM2.5 mass concentrations in Beijing were significantly lower 

than that in Shijiazhuang (Fig. 1).  

Formation of particle phase sulfate through heterogeneous or multiple phase 355 

oxidations includes the uptake of SO2 and the following oxidation in particle phase. 

Thus, it is meaningful to identify the rate determining step (RDS) for understanding the 

evolution of the SOR. As shown in Fig. 3, the initial SO2, BET increased exponentially 

from 0 to (1.13 ± 0.21)  10-5 when the RH increases from 2 % to 80 % in the presence 

of 50 ± 2.5 ppb NH3 with or without 100 ± 2.5 ppb NO2. The dependence of SO2, BET 360 

on RH was SO2, BET = 2.44E-7 + 6.69E-8exp(RH/17.4) with a correlation coefficient 

of 0.96. A transition region of the SO2, BET verse the RH was observable when the RH 

ranged from 60 % to 80 %. When the RH was higher than 70%, the SO2, BET increased 

quickly as a function of the RH. The similar dependency on RH for the SO2, BET and the 

SOR suggests that the uptake kinetic of SO2 might determine sulfate formation.  365 

In a previous work (Zhang et al., 2019), it has been found that all the uptake of 

SO2 on dust or nitrate coated dust can be transformed into sulfate over the time scale of  

https://doi.org/10.5194/acp-2021-289
Preprint. Discussion started: 7 May 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

uptake experiment using the similar coated-wall flow tube reactor. Another study also 

observed the quick formation of sulfate on the surface of aqueous microdroplets without 

the addition of other oxidants, which was explained by the direct interfacial electron 370 

transfer from SO2 to O2 on the aqueous microdroplets (Hung et al., 2018). This means 

that oxidation of S(IV) might not be a RDS of sulfate formation. The oxidation 

processes can be ascribed to catalytic oxidation by O2 in the presence of transition metal, 

oxidation by O2 and nitric acid promoted by protons in the presence of nitrate (Zhang 

et al., 2019), and the oxidation by other dissolved oxidants in liquid phase (Chen et al., 375 

2019d;Cheng et al., 2016;Wang et al., 2016). To further validate this assumption, the 

formation rates of SO4
2- (d[SO4

2-]/dt) in aerosol liquid phase were calculated according 

to the method used in previous work (Liu et al., 2020a;Cheng et al., 2016). If oxidation 

of S(IV) is the rate determining step, the formation rate should show a similar 

dependence on RH like the SOR. 380 

As shown in Fig. S5, the relative contributions of different oxidation paths of S(IV) 

varied obviously case by case. In summer and autumn, oxidation by H2O2 was the most 

important path followed by TMI. In winter, however, either NO2, O3 or H2O2 could 

contribute to the major oxidation path. Figure 4A and B show the dependence of the 

formation rate of sulfate on RH in the range of 35%-100% in Shijiazhuang. The dataset 385 

for RH below 35 % were omitted due to the large uncertainty in aerosol pH calculations 

(Ding et al., 2019;Guo et al., 2016;Pye et al., 2020). The relative contributions of 

different oxidation paths of S(IV) also varied obviously as a function of RH. NO2 and 

O3 played important role in aqueous S(IV) oxidation when RH was from 35 % to 45%, 
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while TMI became the dominator when RH ranged from 45% to 70%. Above 70% RH, 390 

the contribution of H2O2 was dominant, which is consistent with several recent studies 

(Liu et al., 2020a;Liu et al., 2020b). However, the total formation rate of sulfate in 

aerosol liquid phase slightly decreased as RH increasing. A weak downward trend of 

the d[SO4
2-]/dt with RH was also observable in the 2D Kernel density graphs as shown 

in Fig. 4B. This is opposite to the dependencies of the SOR and the SO2 on RH as 395 

discussed above, which means the RDS for sulfate formation should be the uptake of 

SO2 instead of oxidation of S(IV) in aqueous phase.  

 

Fig. 4. Dependence of sulfate formation rates on RH in Shijiazhuang. The white line is 

the probability weighted d[SO4
2-]/dt. 400 

Phase state is a crucial factor determining the mass transfer of pollutants from gas 

phase to particle phase (Davis et al., 2015;Marshall et al., 2018;Shiraiwa et al., 2011;Liu 

et al., 2014), while the AWC or RH greatly affects the phase state of aerosol particles 

(Duan et al., 2019;Liu et al., 2019b;Shiraiwa et al., 2017). For example, ambient 

particles were found to change from semi-solid to liquid state when the RH was above 405 
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~60 % (Liu et al., 2019b;Liu et al., 2017b) corresponding to the AWC higher than ~15 

μg m-3 (Liu et al., 2017b) under the typical urban environment in Beijing based on 

rebound fractions measurements. It was also confirmed that haze particles displayed a 

solid-aqueous equilibrium state when the RH was around 60-80% using an individual 

particle hygroscopicity system (Sun et al., 2018). As shown in Fig. S6, the most 410 

probable distribution of the AWC exponentially increased with the RH (AWC= -5.76 

+ 5.15exp(RH/36.1), R=0.98) in Shijiazhuang. An obvious transition region of the RH 

between 60 % and 80 % was also observed. These results indicate that the liquid phase 

aerosol should appear when the RH is higher than ~60 % (Liu et al., 2019b;Liu et al., 

2017b), subsequently, promote the conversion of SO2 to sulfate. The SOR increased as 415 

a power function of AWC (SOR = 0.072+0.043AWC0.53, R=0.78), while it was 

linearly correlated with the ratio of AWC/PM2.5 (SOR = 0.15 + 0.40  AWC/PM2.5, 

R=0.78) as shown in Fig. 3C. Similarly, the AWC of dust internally mixed with 

NH4NO3 was also calculated using the ISORROPIA II model. The SO2,BET also showed 

a similar trend as a function of AWC/PM2.5 (SO2,BET = 3.08E-5AWC/PM2.5, R=0.95) 420 

(Fig. 3D) although the ranges of AWC/PM2.5 were different due to the difference in 

aerosol composition. This means that the fraction of aerosol liquid water governs both 

the conversion of SO2 to sulfate and uptake kinetics of SO2. 

It should be noted that although the SOR showed a similar RH dependence as the 

SO2, a deviation was observed in both Shijiazhuang and Beijing (Fig. 3). The SO2 was 425 

measured at a fixed temperature and initial SO2 concentration. In the atmosphere, both 

of them varied obviously. This might lead to the observed deviation. On the other hand, 
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the coexisted components such as organic aerosol and black carbon in atmospheric 

particles should have complicated influence on the hygroscopicity and the phase-

change of particles. The difference between the model particles and the real ambient 430 

aerosol particles might also partially lead to the deviations of the RH dependence 

between the SOR and the SO2,BET. In addition, it also implies that besides the reaction 

in aerosol liquid phase, other reaction paths such as oxidation of SO2 by gas phase 

oxidants should also play an important role in sulfate formation (Duan et al., 2019). 

3.3 Influence of particle composition on AWC and sulfate formation. Besides RH, 435 

particle composition is another important factor to affect the AWC. According to the 

ions balance (Fig. S7A), ammonia was adequate to neutralize the anions in PM2.5, which 

is consistent with the results in the literature (Wang et al., 2020b). In addition, 

(81.515.9) % (with the median of 87.1%) of ionic anions (nitrate, chloride, and sulfate) 

were neutralized by ammonium (Fig. S7B). This means NH4NO3, (NH4)2SO4 and 440 

NH4Cl should be the dominant form of nitrate, sulfate, and chloride in PM2.5. We further 

reconstructed the molecular composition from the ions based on the principles of 

aerosol neutralization and molecular thermodynamics (Kortelainen et al., 2017). The 

molecular concentrations were estimated according to the molar ratio of NH4
+-to-SO4

2- 

(RNH4+/SO42-) according to the following rules: i) if 0 < RNH4+/SO42-< 1, NH4
+ existed as 445 

the chemical forms of H2SO4 and NH4HSO4. ii) 1< RNH4+/SO42-< 2, NH4
+ existed as 

(NH4)2SO4 and NH4HSO4. iii) if RNH4+/SO42- > 2, then the fraction NH4
+ corresponding 

to twice the amount of SO4
2- existed as (NH4)2SO4 and the remaining fraction of NH4

+ 

was associated with NO3
- and Cl-. iv) the rest of NO3

-, which was not neutralized by 
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NH4
+ was from NaNO3. Figure 5A and B show the variation of the molecular 450 

composition with RH in Shijiazhuang. Obviously, NH4NO3 and (NH4)2SO4 were the 

major molecular components. Both of them showed upward trend as the RH increased. 

In particular, the fraction of NH4NO3 increased gradually from ~10 % to ~50% when 

the RH increased from ~30% to 90%. Correspondingly, the fraction of (NH4)2SO4 

decreased as the RH increased. 455 

  

Fig. 5. Variations of (A) and (B) molecular composition of water-soluble ions, and (C) 

and (D) the corresponding contributions to AWC with RH in Shijiazhuang. 

It should be noted that the deliquescence RH (DRH) of NH4NO3 (61.8 %) (Onasch 

et al., 1999) is lower than those of NH4Cl (78%) (Hu et al., 2011) and (NH4)2SO4 (80 %) 460 

(Lightstone et al., 2000). This means ammonium nitrate should the major contributor 

to the AWC compared with sulfate and chloride when both the concentrations and 

hygroscopicity were taken into consideration. We further calculated the AWC attributed 

to the individual molecular component. The deliquescence curve of each salt was 

calculated at 298.5 K using the E-AIM model (Clegg et al., 1998). Then, the AWC was 465 
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calculated with the mass of the salt and the mass-based growth factor at the 

corresponding RH. As shown in Fig. 5C, NH4NO3 and (NH4)2SO4 were the major 

contributors to the AWC. Especially, NH4NO3 dominated the AWC when the RH ranged 

from 60% to 80%, in which the SOR and the SO2 were very sensitive to RH. These 

results suggest that NH4NO3 should be the most important mediator to AWC, 470 

subsequently, the uptake of SO2 in the transition regime of RH in Fig. 3A. In previous 

work, it has been found that SO2 oxidation can be promoted by particulate nitrate 

through the accumulation of proton (Zhang et al., 2019) and the formation of NO+NO3
- 

(Kong et al., 2014). Our results further showed the importance of NH4NO3 in the AWC, 

which possibly determines the phase state of particles, subsequently, the uptake kinetics 475 

of SO2 and the SOR as discussed above. To further confirm the role of NH4NO3 in the 

uptake of SO2, uptake experiment of SO2 on pure dust has been carried out at 2% and 

80% RH, respectively. The corresponding SO2,BET was 1.101.0510-7 and 

1.660.2810-7 on pure dust sample in the presence of NH3 and NO2. However, as 

discussed above, it was 0 and 1.120.1510-5 on dust internally mixed with 33 % 480 

NH4NO3. This directly confirmed the role of NH4NO3 in SO2 uptake via aerosol liquid 

water. 

Figure S8 shows the dependencies of the AWC/PM2.5 and SOR on the fraction of 

the individual molecular component. Both the AWC/PM2.5 and SOR statistically 

increased as the fraction of NH4NO3 increased (Fig. S8A and D). A weak increase 485 

followed by a decrease was observed for the AWC/PM2.5 as the fraction of (NH4)2SO4 

increased, while a negative correlation between the AWC/PM2.5 and the fraction of 
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NH4Cl was observed. It did so for the SOR and the fraction of NH4Cl. These phenomena 

were overall consistent with the sequence of their hygroscopicity. In addition, chloride 

is a primary pollutant mainly from coal combustion and biomass burning (Bi et al., 490 

2019). Besides chloride, other primary particles from combustion such as soot, which 

were not accounted for in this work, might also decrease the uptake capability of water, 

subsequently, be unfavorable for SO2 uptake.  

To assess the relative importance of sulfate and nitrate (the major SNA component) 

to AWC, the sensitivity of their fraction to AWC in Shijiazhuang was tested using the 495 

ISOPRRIA II model and shown in Fig. S9. The base case means the AWC was 

calculated using the measured concentration of the ions. Then, we reduced the fraction 

of NH4NO3 or (NH4)2SO4 from 0 to 80 % individually compared with the base case. 

Figure S9A shows the time series of the calculated AWC after reducing 50 % of 

NH4NO3 or (NH4)2SO4. Reduction of either NH4NO3 or (NH4)2SO4 resulted into 500 

obvious decrease of AWC during pollution events. In most cases, the reduction 

amplitude of AWC was larger when reducing 50 % of NH4NO3 than (NH4)2SO4. Figure 

S9B shows the mean ratio of AWC at a certain reduction fraction of NH4NO3 or 

(NH4)2SO4 to that under the base case. When NH4NO3 was reduced from 0 % to 80 %, 

the AWC linearly reduced from 0 % to 61.10.1 % with a slope of 0.48%. It varied from 505 

0 % to 66.00.2 % for (NH4)2SO4 (with a slope of 0.41%). This means that the AWC is 

more sensitive to the fraction of NH4NO3 than (NH4)2SO4 in Shijiazhuang. This also 

implies the importance of NH4NO3 in the observed high AWC in haze days. On the 

other hand, reducing 10 % of NH4NO3 can lead to a reduction of 5.21.0% AWC during 
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haze days. Subsequently, we can roughly estimate that the SOR might be reduced by 510 

~4 % through a linear interpolation according to the equation of the SOR and the 

AWC/PM2.5 (SOR = 0.15 + 0.40  AWC/PM2.5) fitted in Fig. 3C. This means reduction 

of NOx and NH3 should lead to additional reduction of particulate sulfate. 

3.4 Influence of other factors on sulfate formation. Several studies have proposed 

out that NO2 can promote the oxidation of SO2 on particle surfaces and in aqueous 515 

phase. For example, laboratory studies have found that ppm level of NO2 can promote 

sulfate formation on the surface of dust through NO+NO3
- which is disproportionated 

from N2O4 intermediate (He et al., 2014;Liu et al., 2012;Ma et al., 2008), or ppm level 

of NO2 can promote the oxidation of SO2 in the deliquesced oxalic acid (Wang et al., 

2016). This is supported by the evidence that high fraction of sulfate in PM2.5 is 520 

positively correlated with NO2 concentration (Xie et al., 2015) and high PM2.5 

concentration is accompanied with high ratio of NO2/SO2 in several case studies (He et 

al., 2014). The importance of the SO2 oxidation by NO2 in aqueous phase has also been 

confirmed in modeling studies (Cheng et al., 2016;Xue et al., 2016). However, this 

reaction path is still under debate because of the following reasons: 1) The 525 

concentration of NO2 in laboratory studies was about 2 orders of magnitude higher than 

that in ambient air. This will affect the surface concentration of the intermediate (N2O4) 

and the concentration of solved NO2 in aqueous phase. 2) The dissolved NO2 

concentration is highly sensitive to pH. The pH value in aerosol was 5.6-6.2 estimated 

in modeling study (Cheng et al., 2016). However, a recent work found that it varied 530 

from 3.8 to 4.5 at RH > 30 % and showed a moderate acidity because of the 
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thermodynamic equilibrium between NH4
+ and NH3 (Ding et al., 2019). 3) The relative 

importance of each path depends on the concentration of the relevant pollutants 

including H2O2 and TMI (Liu et al., 2020a). Therefore, it is necessary to verify the 

importance of this process by long-term observation at different environments. 535 

    Figure 6 shows the 2D Kernel density graph of the sulfate fraction in soluble PM 

and the SOR in Shijiazhuang as a function of the concentration of different gas phase 

pollutants. It should be pointed out that the SOR or the SO2 should be positively 

correlated to NO2 concentration if it can promote the conversion of SO2 to sulfate or 

the uptake of SO2. However, both sulfate fraction and SOR were negatively correlated 540 

with the concentration of NO2 in a point view of statistics. A same trend was observed 

in Beijing (Fig. S10). This is similar to recent studies that observed the opposite 

correlation between SOR and NOx concentration in Sichuan Basin (Tian et al., 2019) 

and in Beijing (Fang et al., 2019). This means that NO2 concentration is statistically not 

a determining factor for sulfate formation in the atmosphere. This is well supported by 545 

the uptake kinetics of SO2 measured using a flow tube reactor. As shown in Fig. 3A and 

B, when 502.5 ppb of NH3 presenting in the reactant gases, no difference was 

observable about the SO2,BET between in the presence (read squares) and absence of 

1002.5 ppb of NO2 (white triangles). This is consistent with these previous studies that 

found NO2 having no influence on SO2 uptake when NH3 was abundant in the 550 

atmosphere (Wu et al., 2019;Wang et al., 2021). In addition, it is consistent with the 

fact that H2O2 dominated the oxidation of S(IV) in aerosol liquid water when RH was 

higher than 60% (Fig. 4A). 
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Fig. 6. Dependence of the sulfate fraction in soluble PM and the SOR on gaseous 555 

pollutant concentration in Shijiazhuang. 

Both the fraction of sulfate and the SOR in Shijiazhuang statistically decreased as 

a function of SO2 and CO concentration, respectively (Fig. 6B, C, G and H). This might 

be explained by the high concentration of primary aerosol components when pollution 

events occurred with high concentration of primary gas phase pollutants. However, the 560 

fraction of sulfate increased as a function of Ox (Fig. 6D). When the Ox concentration 

was greater than 50 ppb, the SOR slightly increased with the Ox concentration (Fig. 6I). 

A more obvious positive dependence of sulfate fraction on Ox concentration was 

observed in Beijing (Fig. S6D). This means oxidation capacity also plays an important 

role in sulfate formation, especially in Beijing. This is consistent with the recent finding 565 

that O3 plays an important role in SO2 oxidation at different locations (Fang et al., 

2019;Tian et al., 2019;Duan et al., 2019). As shown in Fig. 6J, the SOR positively 

correlated with the concentration of NH3 in Shijiazhuang. This means that NH3 can 
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promote the conversion of SO2 to sulfate. This is well in agreement with laboratory 

studies that observed the promotion effect by NH3 to the heterogeneous reaction of SO2 570 

on different mineral oxides (Yang et al., 2016). In addition, flow tube experiments were 

also carried out by exposing the internal mixing sample (2:1 dust and NH4NO3) to 200 

 2.5 ppb SO2 in the absence of NH3 and NO2 at 2 % and 80 % RH, respectively. As 

shown in Figure 3A and B, the SO2, BET was zero regardless of the reactants under dry 

condition (2 % RH), while it increased to (1.66  0.28)  10-6 at 80 % RH. However, it 575 

was significantly smaller than the SO2, BET ((1.13  0.21)  10-5) in the presence of 50 

 2.5 ppb NH3 with or without 100  2.5 ppb NO2. These results further confirm that 

NH3 can promote the uptake of SO2 at high RH, possible through enhancing the 

solubility of SO2 in water (Chen et al., 2019d;Cheng et al., 2016;Wang et al., 2016). 

4. Conclusions and atmospheric implications. 580 

Based on one-year of observations, we confirmed that high PM2.5 mass concentration 

in pollution events usually coincided with the high sulfate concentration, the fraction 

of sulfate and the SOR in both Beijing and Shijiazhuang. In Shijiazhuang, the SOR 

exponentially increased as a function of RH in the point view of statistics, which was 

similar to the RH dependence of the SO2 on the model particles containing 33% 585 

NH4NO3 in the presence of NH3. The SOR and SO2 linearly increased as a function of 

the fraction of aerosol water content in PM2.5. The enhanced uptake coefficient of SO2 

at high RH after the liquid phase aerosol appeared might explain the increased SOR 

because uptake of SO2 was the rate determining step for the conversion of SO2 to 

particulate sulfate. NH4NO3 played an important role in the AWC, the phase state of 590 
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aerosol particles, subsequently, the uptake kinetics of SO2 in haze days under high RH 

conditions. 

The contribution of nitrate to PM2.5 is increasing in China (Li et al., 2018;Tian et 

al., 2019) due to the intensive emissions of NOx from steel production and cement 

manufacturing (Wu et al., 2018;Qi et al., 2017) and the increasing NOx emissions from 595 

traffic (Liu et al., 2007;Wang et al., 2011). The mean fraction of nitrate in PM2.5 was 

21.412.4 % in Shijiazhuang and 15.813.4 % in Beijing, respectively. They were close 

to the reported values in PM1.0 during the summer of Beijing (24 %) (Li et al., 2018) 

and in PM2.5 during the winter of Chengdu (23.3 %) and Chongqing (17.5 %) (Tian et 

al., 2019). It has been found that the fraction of nitrate and ammonium usually increases 600 

as a function of PM2.5 mass concentration (Li et al., 2018). Therefore, NOx should be 

an urgent air pollutant in the future in China even from the point view of its contribution 

to PM2.5 mass.  

As observed in this work, NH4NO3 has importance contribution to PM2.5 mass 

concentration and the aerosol water content, subsequently, the phase state of particles 605 

in the RH range of 60-80%. Reduction of NOx emissions should lead to decrease in 

NH4NO3 concentration, subsequently, the AWC during serve pollution events. This will 

lead to an additional reduction of SO2 uptake and the formation of particulate sulfate 

through aqueous reactions. Based on our rough estimation, 4 % of sulfate might be 

reduced due to aqueous reaction in Shijiazhuang if the mass concentration of NH4NO3 610 

was reduced by 10 %. More work is required to quantitatively assess the contribution 

of nitrate to sulfate formation from aqueous reactions in the future. It should be noted 
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that ozone pollution becomes more and more important in China (Chen et al., 

2019e;Ziemke et al., 2019). This requires to harmoniously reduce NOx and volatile 

organic compounds in the near future. It is also important to take actions on NH3 615 

emission control in the future as NH3 can significantly promote the uptake of SO2 in 

liquid phase aerosol. 
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